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Abstract 

 Tapered steel members are commonly used over prismatic members because of their 

structural efficiency: by optimizing cross section utilization, significant material can be saved. 

However, if proper rules and guidance are not developed for these types of members, safety 

verification will lead to an over prediction of the material to be used. In this paper, the case of beam 

with linear varying web is studied. It is the purpose of this paper to: (i) review recent proposals for 

the stability verification of this type of beam; (ii) carry out FEM numerical simulations covering 

several combinations of bending moment about strong axis, My, and levels of taper; (iii) compare 

results to a) existing rules in EC3-1-1 (General Method); b) application of the design procedure 

proposed by Marques et al; c) Merchant-Rankine procedure for stability verification of tapered 

beams.  

Keywords 

Stability verification, Eurocode 3, Non-uniform members, Tapered beams, Finite element 

analysis, Steel structures 

1 Introduction 

This work is mainly based on the verification of the existing methods for the checking of 

the stability of members loaded mainly with bending moments at room temperature as well as 

elevated temperature. It concerns the elastic lateral torsional buckling of linearly web tapered 

I-beams with double-symmetric cross-sections, under linear bending moment distributions.  

Web tapered beams are quite usual members in steel construction nowadays. Their use is 

largely widespread since they allow significant material saving and much consistent design 

which leads to optimization of the structure. For the case of uniform bending moment 

distribution, it is clear that prismatic member would be the best option because in that case all 

cross-sections would be fully utilized (considering first order forces). Tapered members are 

usually adopted in order to optimize the load capacity at each cross-section according to the 

respective distribution of stresses. 

Though beams in the constructions, and mainly as members in portal frames, are generally 

loaded in bending and compression at the same time, it is clear that the problem of bending is 

the most difficult one in the context of lateral torsional buckling. 

EC3 provides several methods for the stability verification of members and frames. The 

stability of prismatic members under bending in EC3-1-1 [5] is checked by application of 

clause 6.3.2 – stability of beams. Regarding the stability of a tapered beam, clause 6.3.2 does 

not apply.  

It should be said that one of additional problems that occur when dealing with tapered beams 

is that they are usually made of class 4 sections in order to optimize the member. This fact will 

also be studied in this work.  
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2 State of the art 

Lateral-torsional buckling is an instability phenomenon characterized by the occurrence 

of large transversal displacements and rotation about the member axis, under bending moment 

about the major axis (y axis). This instability phenomenon involves lateral bending (about z 

axis) and torsion of cross section. 

 

Figure 2-1 Example of lateral-torsional buckling phenomenon 

The part of the section that is compressed (compressed flange in case of I section) 

undergoes lateral deformation. This part is considered to be continuously restrained by the part 

of the section that is in tension, which initially does not have any tendency to move laterally. 

A fundamental role on the analysis of this type of phenomena plays elastic critical 

moment ( crM ), which is the maximum value of bending moment supported by a beam without 

imperfections. There are many proposals on evaluating the elastic critical moment and some of 

them are presented below.  

2.1 General method 

As it has been mentioned already, Eurocode 3, part 1, provides several methods for the 

stability verification of prismatic members but none of the methods is applicable for stability 

of tapered beams. The code is referring to the clause 6.3.4 for determination of buckling 

resistance of such a member (General method). According to this method, overall resistance to 

out-of-plane buckling for any structural component can be verified by ensuring that: 

,

1

1.0
op ult k

M

 




  2.1 

where 

,ult k
 is the minimum load amplifier of the design loads to reach the characteristic 

resistance of the most critical cross section of the structural component considering 

its in-plane behaviour without taking lateral or lateral-torsional buckling into 

account, but however accounting for all effects due to in plane geometrical 

deformation and imperfections, global and local, where relevant;  

op
 is the reduction factor for the non-dimensional slenderness op , to take account 

lateral and lateral torsional buckling; 



European Erasmus Mundus Master 

Sustainable Constructions under natural hazards and catastrophic events 
520121-1-2011-1-CZ-ERA MUNDUS-EMMC 

 

 

6 

1M is the partial safety coefficient for instability effects (in most National Annexes is 

adopted as 1,0). 

Global non-dimensional slenderness op  for the structural component should be determined 

from:  

.

,

ul k
op

cr op





  2.2 

where 

,cr op
is the minimum amplifier for the in-plane design loads to reach the elastic critical 

resistance of the structural component with regards to lateral or lateral-torsional 

buckling without accounting for in-plane flexural buckling. 

 

The reduction factor op  may be determined from either of the following methods:  

a) the minimum value of  

- z  for lateral buckling according to 6.3.1 of [5] 

- op  for lateral-torsional buckling according to 6.3.2 of [5], 

each calculated for the global non-dimensional slenderness op .  

This leads to: 

,

1 , 1

y EdEd
op

Rk M y Rk M

MN

N M


 
   2.3 

b) a value interpolated between the values z  and LT
 as determined in a) by using the 

formula for ,ult k   corresponding to the critical cross section. 

This leads to: 

,

1 , 1

1
y EdEd

z Rk M LT y Rk M

MN

N M   
 

 
 2.4 

In order to determine ,cr op and .ul k the code is not giving any consistent procedure but 

suggesting use of FEA software which is not practical solution. 
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Figure 2-2  The flow chart for the application of the General Method, see [8] 

There have been done many research on the buckling resistance of the web-tapered 

beam that were based on this method.  

Kitipornchai and Trahair [5] give an analytical solution for elastic critical moment of tapered 

beam, covering any type of tapered I-beam and loading.  
 

Expressions for the elastic critical moment are given also by Galéa (1986) [4] in which the 

elastic critical load of a web-tapered beam subjected to uniform bending moment distribution 

is obtained by the determination of an equivalent height and moments of inertia. The elastic 

critical moment of beams subjected to uniform bending moment and fork supports can be 

obtained using the expressions for the prismatic beams as long as the equivalent geometrical 

properties are used, given by: 

2

max 0.283 0.434 0.283eqh h      2.5 

where  

maxh is the maximum depth of the member and 
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min max( / )h h   is the taper ratio, and  

,z eq zI I , 2.6 

,max ,min

,
2

T T

T eq

I I
I


 . 2.7 

In case of non-uniform bending moment distribution, there are some coefficients 

provided to account for this effects. Also, for fully-restrained rotation about the weak axis of 

the cross-section at the end of the member, the formulae for the equivalent beam depth slightly 

changes, but all this can be found in [4]. 

 

Boissonnade N. and Braham M. (2002) gave the expressions for the elastic critical 

moment [2] in which is considered monosymmetric cross-section with linear distribution of 

bending moments and made a Mathcad file (ELTBTB2) for calculating the same. 

 

According to the most recent studies of Marques L. et al. (2012) [3], the second order 

theory formulae for lateral-torsional buckling of beams with a linearly tapered web 

symmetrical to its centroid are derived using first yield criterion to find the resistance of the 

tapered beam at the most stressed cross-section. This proposal gives a stable level of accuracy 

and certainty regarding its application that so far the general method in EC3-1-1 was not able to 

provide. The whole procedure is presented in Design procedures chapter. 
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2.2 Comparison of the available software for the calculation of the critical 

load multiplier 

2.2.1 ELTBTB2 

This programme is actually a Mathcad programme, made by Marc Braham, for 

determination of the critical load multiplier for lateral torsional buckling of web-tapered beams. 

The programme is based on differential equation for the equilibrium of a monosymmetric 

beam. 

- The programme is easy to use; 

- Allows for the linear distribution of moments (no axial compression can be taken 

into account); 

- No intermediate load can be taken into account; 

- It is solving the problem for the beams on two supports, with no lateral restrains. 

2.2.2 Alpha_Cr 

Alpha_Cr is a programme for the determination of critical loads, on basis of the Finite 

Element Method (FEM). Some characteristics of the programme are:  

- The program assumes mono-symmetric cross sections;  

- Local buckling of the cross sections (Class 4 sections) is not considered;  

- The loads can be applied in the xz-plane; 

- Critical load factors for the general stability problem of lateral torsional buckling 

and the special cases of flexural buckling and torsional buckling can be calculated; 

2.2.3 LTBeamN 

LTBeamN is the software for determination of elastic stability (in-plane as well as out-

of-plane) of straight beams deflected and/or compressed by determining in particular critical 

load factor cr . Advantages of using this software are: 

- The longitudinal profile of a beam can be non-uniform (without discontinuities), 

with the linear dimensional changes on all or part of their length. The distribution 

of applied loads (M and N), the support conditions in the plan and the conditions 

for maintaining out-of-plan can be very varied; 

- Gives information on the shape of the fundamental mode of elastic instability (first 

eigenmode), as well as higher order modes own if required; 

- An indication of the critical load for the in-plane buckling is also provided. 

Modelling the behaviour of the beam uses a technique of finite element "bar" type that 

requires a discretization of the beam into a number of small. The degrees of freedom taken into 

account at each node are four, including: 

 lateral displacement (v) 

 longitudinal rotation - twist (q) 

 rotation lateral bending (v') 

 warping deformation (q') ; 

- Besides the double-symmetric and mono-symmetric sections, it covers any profiles 

defined by the geometric properties; 
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2.3 Members with intermediate restrains 

It is very common situation to have partial bracings that only prevent transvers 

displacements of the tension flange. These partial bracings are really effective in increasing the 

resistance to out-of-plane buckling.  

The elastic critical moment for lateral-torsional buckling, ,0crM , for an uniform moment 

and standard bracing conditions at each end of the segment (no transverse displacement, no 

rotation around the longitudinal axis and free rotation in plane) is given by: 

2

0 ( )
2

s
cr cr

i
M N

a
 , 2.8 

where  

crTN is the elastic critical load in a torsional mode, given by: 

22 2

2 2 2

1
( )wz

crT t

s t t

EIEI a
N GI

i L L


   . 2.9 

Here ,0crM  should be calculated using the properties of the smallest cross section. 

For mono-symmetric cross sections with uniform flanges, the elastic critical moment 

for an arbitrary bending moment diagram is given by: 

02

0

1
( )cr cr

t

M M
m c

 , 2.10 

where   

tm  is the equivalent uniform moment factor, or in case of linear moment distribution, it 

depends on the ratio between the smaller and the larger bending moment, t  

(sagging moment is positive). This coefficient t  can be found in [8]. When the 

variation of the bending moment is not linear, special expressions are also provided 

in [8], chapter 4.3.3; 

0c  is the equivalent cross section factor given in the Table 4.7 in [8] 

2.4 Stable length of a segment of a member 

It should be said that, apart from the General method, Eurocode gives rules for defining 

the stable lengths of segment containing plastic hinges for out-of-plane buckling, covering 

haunches which can be sort of tapered members. Clause (1)B of BB.3.2 in EN 1993-1-1 

specifies the length of the segment of a member between the restrained section at a plastic 

hinge location and the adjacent lateral restraint in which lateral torsional buckling effects may 

be ignored. This length is given as: 
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22

,

2

1

38
0,85

1 1

57,4 756 235

z
m

pl y yEd

t

i
L

W fN

A C A I




   
          

 
2.11 

where   

EdN  is the design value of the compression force in the member 
2

,pl y

t

W

A I
 is the maximum value in the segment  

A  is the cross sectional area [mm²] at the location where 
2

,pl y

t

W

A I
 is a maximum of the 

tapered member  

,pl yW  is the plastic section modulus of the member  

tI    is the torsional constant of the member  

yf   is the yield strength in [N/mm²]  

zi   is the minimum value of the radius of gyration in the segment, provided that the 

member is restrained at the hinge as required by 6.3.5 and that the other end of 

segment is restrained either by a lateral restraint to the compression flange where 

one flange is in compression throughout the length of the segment, or by a torsional 

restraint, or by a lateral restraint at the end of the segment and a torsional restraint 

to the member at a distance that satisfies the requirements for sL .  

0.85
n k

s

C L
L

c


 

2.12 

where  

kL is the length derived for a uniform member with a cross-section equal to the 

shallowest section 

nC  see BB.3.3.2 

 
c  is the taper factor for a non-uniform member with constant flanges, for which 1.2h b  

and / 20fh t  the taper factor c should be obtained as follows: 

2/3

max

min

3
1 1

9
f

h
c

hh

t

 
   

   
  

   

2.13 

Still, this method is not saying how to evaluate the resistance of the tapered member 

but determining the stable length of the segment of the member. 
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2.5  Choice of a proper taper ratio 

Since it is not clear that a higher taper ratio will lead to a higher (relative) resistance it was 

investigated in [2] and the quantification of the “unused” resistance in a tapered beam with a 

bending moment distribution   (ratio between the smaller and bigger bending moments at the 

two ends of the beam) is presented below. 

 

Figure 2-3  Quantification of the “unused” resistance [2] 

Using the graph presented above, the best taper ratio for a given bending moment 

distribution can be identified in a really practical way. 

2.6 Choice of an appropriate buckling curve 

Due to the varying height of the member, more than one buckling curve may exist for 

a tapered member (e.g. in which the ratio h/b≤2 and h/b>2 (height/width) is present in the same 

tapered beam or beam-column). As an alternative and on the safe side, the buckling curve 

corresponding to the highest imperfection factor can be chosen, leading to conservative levels 

of resistance. 

The existing buckling curves are adopted to best fit the numerical results for uniform 

members with a sinusoidal imperfection. Therefore, they should not be applicable for the 

members with non-uniform height. 

It was demonstrated in [6] that use of flexural buckling curves in the General method 

can lead to over safe results (more than 30% relatively to full non-linear numerical analysis). 

On the other hand, if the lateral torsional buckling curves for rolled sections or equivalent 

welded sections (clause 6.3.2.3 of EC3-1-1) are considered, results can reach differences of 

30% on the unsafe side. Also in [3] is shown that the consideration of the buckling curves a, b, 

c or d is not adequate for application of the General Method and, as a result, proper 

modifications are proposed (introduction of the “over-strength” factor). This is illustrated in 

section 2.8 Design procedure of this document. 
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2.7 Cross-section class and the location of the critical cross-section 

The first order failure location of tapered beam-columns varies with varying levels of 

axial force relatively to the applied bending moment leading. With the increase of the axial 

force the maximum utilization location, ,

I

c MNx , moves towards the smallest cross section, which 

is the first order failure location of the column, ,

I

c Nx  as the axial force is constant. 

An iterative procedure should be carried out in order to define the class of the cross-

section of a tapered member. This would require evaluation of the stresses (1st and 2nd order) 

along the member. How this is not practical approach, it is suggested to adopt highest class 

which may result in over-conservative design as the cross-section class may be higher in an 

interval of the member which is not critical in terms of utilization. Also, instead of defining the 

critical design location, equivalent cross-section property formulae for the calculation of elastic 

critical forces should be used. 

With the increase of tapering, both the resistance and the plateau length are increasing 

(this increase is less significant for the higher taper ratios, which can be seen in the figures 2-4 

presented below and derived in Marques et al. (2013), see [2]). This influence of tapering is 

taken into account by introducing the coefficient ,

I

c Nx  which is defined in [2]. Since the location 

of the critical cross-section will have to change due to the asymmetry of either the 1st or 2nd 

order utilization ratios this factor  II

cx  accounts for this effect.  

In case of prismatic members, the second order failure location is coincident with the 

first order failure location, leading to the same load amplifier for both cases, 

, , ,( / 2) ( / 2) / ( / 2)ult k y Rk y EdL M L M L  . For this case, the increase in resistance of the 

parabolic bending moment case relatively to the uniform bending moment case is due to 

smaller size of the plastic zone that surrounds the failure location and as a result, due to a higher 

“supporting” action from the unyielded areas. Differently saying, the “over-strength” factor is 

an intuitive parameter proposed in [2] to qualitatively describe not only the lower spread of 

plasticity around the failure location, but also the increase in resistance for a given beam with 

1h   and 1  relatively to the reference case of 1h   . 

The utilization ratio may be determined from: 

,

, ,

( )
( ) 1.0

( )

y Ed

pl y Rd

M x
x

M x
   . 2.14 

  

Figure 2-4  Buckling curve and Imperfection factors for tapered beams [2] 
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This coefficient  II

cx can also be found as   (“over-strength” factor). If the factor 

  is determined, the verification is always based on
I

cx  . This leads to: 

, ,( ) ( )
( ) ( )

II I

ult k c ult k cII I

c c

cr cr

x x
x x

  
  

 


   . 2.15 

As for the cross section verification, it should be performed in a sufficient number of 

locations in order to find the cross section with the highest first order utilization. 

In addition to this, in case of elevated temperatures the class section can be classified 

as for normal temperature design with a reduced value for   as given in (4.2) EC3-1-2 [9].  

0.85 235 yf   2.16 
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2.8 Design procedure according to Simões da Silva L, Marques L and 

Rebelo C [10] 

Table 2-1 Proposed verification procedure for web-tapered I-section beams according to [10] 
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Table 2-2 Calculation of Xc.lim.M
II/L for lateral-torsional buckling of tapered I-beams 

according to [10] 

 

Apart from this procedure, in case of beam-column members, it is possible to verify the 

web-tapered member using interaction formulae given in EC3-1-1 but using some adaptation 

(explained in [7]).  

,

1 , 1

,

1 , 1

1.0

1.0

y EdEd
yy

y Rk M LT y Rk M

y EdEd
zy

z Rk M LT y Rk M

MN
k

N M

MN
k

N M

   

   

 

 

 2.17 

Here, cross section properties to be considered are due to the first order failure location 

of the axial force acting alone ,( )I

c Nx  for the utilization term regarding axial force; and the first 

order failure location of the bending moment acting alone ,( )I

c Mx  for the utilization term 

regarding the bending moment. 

As for the interaction factors ( , )yy zyk k  the equivalent uniform moment factors ,m yC  
 
and

,m LTC , Table B.3 of EC3-1-1 should be adopted provided that the diagram to be considered is 

the bending moment first order utilization diagram instead of the bending moment diagram 

itself, see Table 2-4.  
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Table 2-3 Adaptation of the equivalent uniform moment factor Cm for prismatic members 

[10] 

 

 

Table 2-4 Possible interaction factors for web-tapered beam-columns according to Method 2 

[10] 

 

It is suggested to use the interpolation between the reduction factors for flexural and 

lateral-torsional buckling, respectively z
 
and LT to obtain final op . 

Therefore, for out-of-plane stability verification should be satisfied: 

 

, 1 1.0op ult k M   
 

2.18 
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2.9 Class 4 sections 

When designing plated structures the effects of shear lag, plate buckling and interaction 

of the both effects should be taken into account in the global design (EN 1993-1-5).  

Therefore, the resistances of the cross sections in this work are determined with their 

effective sectional properties (if relevant) for both cross section verification and member 

verification. The effects of shear lag of flanges is taken into account by the use of an effective 

width and is assumed to be uniform over the length of the beams. The effects of plate buckling 

are taken into account by effective cross sectional areas of the elements in compression. For 

the compressed flanges, the combined effect of shear lag and plate buckling are considered.  

Eurocode limits the application of the effective width models to members which panels 

are rectangular and the flanges are parallel, or to non-rectangular members provided that the 

angel of taper is not greater than 10 degrees. In case this is not fulfilled, the reduction factor 

should be obtained assuming that the member is of uniform height based on the largest section.  

Since the results that were obtained for the members of the short lengths were too 

conservative even with using the reduction factor based on the critical cross section (which is 

always smaller than the highest one) this effect is not taken into account. 

 

2.10 Beams at elevated temperature 

2.10.1 Resistance of the members  

The design moment resistance , ,fi RdM  with a uniform temperature 
a  should be 

determined according to (4.8) in EC3-1-2, which is defined as: 

 

, , , ,0 ,[ / ]fi Rd y M M fi RdM k M     2.19 

where 

 RdM
is the plastic moment resistance of the gross cross-section ,pl RdM

 for normal 

temperature design, according to EN 1993-1-1 or the reduced moment resistance 

for normal temperature design, allowing for the effects of shear if necessary, 

according to EN 1993-1-1; 

,yk  is the reduction factor for the yield strength of steel at temperature a  

, , , , , , ,/b fi Rd LT fi y y com y M fiM W k f    2.20 

where 

 yW
 should be taken as ,pl yW

 in case of cross sections class 1 or 2, while for the classes 3 

or 4 it should be taken as ,el yW
; 

,LT fi
 is the reduction factor for lateral-torsional buckling in the fire design situation; 
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, ,y comk   is the reduction factor from section 3 of EC3-1-2 for the yield strength of steel 

at the maximum temperature in the compression flange ,a com
 reached at time t . 

,
2 2

, ,, , , ,

1

[ ] [ ]
LT fi

LT comLT com LT com  


  


 

 2.21 

2
, , , ,, ,

1
[1 ( ) ]

2
LT com LT comLT com        2.22 

 

0.65 235 / yf   2.23 

0.5
, , , , , ,[ ]LT com LT y com E comk k     2.24 

where 

 , ,E comk  is the reduction factor from section 3 of  EC3-1-2  for the slope of the linear 

elastic range at the maximum steel temperature in the compression flange ,a com

reached at time t . 

2.10.2 Material properties of carbon steel at elevated temperatures 

Design values of mechanical (strength and deformation) material properties ,d fiX   are 

defined as follows: 

, ,/d fi k M fiX k X   2.25 

where 

kX
 is the characteristic value of a strength or deformation property (generally yf  or kE

) for normal temperature design to EN 1993-1-1;  

k  is the reduction factor for a strength or deformation property ( , /k kX X ) , dependent 

on the material temperature, see section 3 EC3-1-2;  

,M fi
 is the partial factor for the relevant material property, for the fire situation. This 

factor for the fire situation is given in the national annex. The use of , 1.0M fi 
is 

recommended. 
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Figure 2-5 Alternative stress-strain relationship for steel allowing for strain-

hardening 

The detailed explanation on this diagram can be found in Annex A1 of EC3-1-2 [9]. 

Table 3.1 in EC3-1-2 [9] gives the reduction factors for the stress-strain relationship for 

steel at elevated temperatures given in Figure 2-5. These reduction factors are defined as 

follows: 

- effective yield strength, relative to yield strength at 20 C : , , /y y yk f f   

- proportional limit, relative to yield strength at 20 C : , , /p p yk f f   

- slope of linear elastic range, relative to slope at 20 C : , , /E a ak E E  . 
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Table 2-5 Reduction factors for stress-strain relationship of carbon steel at elevated 

temperatures, EC3, Part 1-2: General rules -Structural fire design 
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3 Evaluation of the numerical model 

In order to perform numerical analysis, a finite element model was implemented using 

the commercial finite element package Abaqus (version 6.11).  

3.1 Structural elements 

Since the stresses in the thickness direction are negligible, the beams are modelled with 

linear 4 node shell elements S4. Three-dimensional shell elements have six degrees of freedom 

at each node (three translations and three rotations).The stresses and strains are calculated via 

numerical integration independently at each section point (integration point) through the 

thickness of the shell, thus allowing nonlinear material behaviour. Abaqus shell elements 

assume that plane sections perpendicular to the plane of the shell remain plane. This means that 

an elastic-plastic shell may yield at the outer section points while remaining elastic at the inner 

section points. Effects of transverse shear deformation are taken into account by defining shell 

elements as thick. Hence, material lines that are initially normal to the shell surface do not 

necessarily remain normal to the surface throughout the deformation, thus adding transverse 

shear flexibility.  

 

Figure 3-1 Numerical model 
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3.3 Analysis types 

Both Linear Eigenvalue Analysis and Geometrical and Material Non-linear Analysis 

are carried out. Typical buckling shape of a beam is presented in the picture below. 

 
Figure 3-2 Buckling shape 

 

3.4 Material properties 

Steel grade S355 was used in reference examples, with a yield stress 355yf MPa . 

Material is set to be elastic-perfectly plastic with the modulus of elasticity 210E GPa , and a 

Poison’s ration of 0.3  . 

In the finite element model, the elastic-plastic material properties are considered, taking 

into account the strain hardening. The properties of the steel are redefined according to the 

temperature level. Here is presented the basic stress-strain diagram for the room temperature. 

 

 

Graph 3-3 Stress-Strain diagramwith linear strain hardening for the room temperature 
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3.5 Geometrical and material imperfections 

Shape and magnitude of imperfections are one of the main difficulties that one 

encounters when dealing with tapered members. 

As for the numerical analysis, geometrical imperfections are defined to be proportional 

to the eigenmode deflection. 

    00 crx x e    3.1 

EC3-1-5 gives the guidance for the implementation of the imperfections in FE-model 

(see [11], Annex C.5). Here it says that for the geometric imperfections equivalent geometric 

imperfections may be used. Equivalent geometric imperfections that take into account the 

effects of: 

- geometrical imperfections of members as governed by geometrical tolerances in 

product standards or the execution standard;  

- structural imperfections due to fabrication and erection;  

- residual stresses;  

- variation of the yield strength.  

 Maximal fabrication tolerances are given in the Annex D of EN  1090-2. 80 % of the 

geometric fabrication tolerances is recommended by EN 1993-1-5. 

This would lead to: 

- global imperfections 

     00,

0.8
80%[ ]

750
gl cr cr

L
x x e x       3.2 

- local imperfections 

     00,

0.8
80%[ ]

100
gl cr cr

b
x x e x  


     3.3 

Table 3-1 Equivalent geometric imperfections according to EN 1993-1-5

 

In combining imperfections a leading imperfection should be chosen and the 

accompanying imperfections may have their values reduced to 70%. 

 

Since tapered members are usually of class 4 webs, web buckling is allowed. 

Also, residual stresses are taken into account when performing numerical analysis. In 

cases of elevated temperatures, the residual stresses are reduced together with the yield strength 

of the material accordingly.  



European Erasmus Mundus Master 

Sustainable Constructions under natural hazards and catastrophic events 
520121-1-2011-1-CZ-ERA MUNDUS-EMMC 

 

 

25 

 

Figure 3-4  Distribution of residual stress in I welded section (C-compression; T – 

tension)(a), and the actual residual stress stress pattern (simplification for Abaqus) (b) 

3.6 Boundary conditions of the model 

Modelling of plane sections of solid elements has to be defined so that even after the 

deformation of the member, the planes remain planar. The relative motion between the nodes 

on the boundary is required. One of the possible ways to define this type of boundary conditions 

is either by defining linear constraint equations or by coupling of the restraints. 

A linear multi-point constraint requires that a linear combination of nodal variables is 

equal to zero. Differently saying: 
1 2 ... 0P Q R

i j N kAu A u A u    , where P

iu  is a nodal variable at 

node P, degree of freedom i and the NA  are coefficients that define the relative motion of the 

nodes. The first model that was made had the boundary conditions defined in this way, but in 

the final version of the numerical model the coupling of restraints is chosen since it seemed to 

be more appropriate even though the obtained results didn’t vary much. 

Kinematic coupling constraints limit the motion of a group of nodes to the rigid body motion. 

The surface-based coupling constraint couples the motion of a collection of nodes on a surface 

to the motion of a reference node. The reference node in this case are set to be the point of the 

middle of the web’s beginning and web’s end as well as middle of the flanges’ beginnings and 

ends. This is because the neutral axis of the member is defined to be the middle line of the 

member. This kinematic coupling constraint does not allow relative motion among the 

constrained DOFs. For this, all the DOFs are constrained. 
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4 Parametric study 

Table 4-1 is presenting the characteristics of the cross sections that have been analyzed 

within this study. As can be seen, two beams have been chosen for computer simulation 

purposes. 

Table 4-1 Definition of the analysed beams type 1(a) and beams type 2 (b) 

a) Left End Right End 

h.w (mm) 1000 500 

t.w (mm) 5 5 

t.f (mm) 10 10 

b.f (mm) 300 300 

i0 (mm) 425.53 239.43 

Iz (cm4) 4501 4500.5 

It (cm4) 23.81 21.73 

Iw (cm6) 1.15E+07 2.93E+06 

A (mm2) 11000 8500 

Av.y (mm2) 6000 6000 

Av.z (mm2) 5050 2550 

Iy (cm4) 194687 44228 

Wel.y (cm3) 3817.4 1701.1 

Wel.z (cm3) 300.07 300.03 

Wpl.y (cm3) 4280 1842.5 

Wpl.z (cm3) 456.25 453.13 
 

 

b) Left End Right End 

h.w (mm) 2000 500 

t.w (mm) 10 10 

t.f (mm) 20 20 

b.f (mm) 300 300 

i0 (mm) 770.52 243.24 

It (cm4) 9016.7 9004.2 

It (cm4) 221.04 171.04 

Iw (cm6) 9.20E+07 6.09E+06 

A (mm2) 32000 17000 

Av.y (mm2) 12000 12000 

Av.z (mm2) 20200 5200 

Iy (cm4) 1.89E+06 91577 

Wel.y (cm3) 18538 3391.7 

Wel.z (cm3) 601.11 600.28 

Wpl.y (cm3) 22120 3745 

Wpl.z (cm3) 950 912.5 

 

 

 
 

Figure 4-1 Cross Section Class along the length of the beams T1 at both room and elevated 

temperatures 
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Figure 4-2 Cross Section Class along the length of the beams T2 at both room and elevated 

temperatures 

As for the beams of type 1 (further T1), the ratio of the heights is 𝛾ℎ = 2 and the ratio 

of the elastic section modulus at the beginning and the end of the beams is  𝛾𝑤 = 2,211. Beam 

of type 2 (further T2) have the ratio of the heights is 𝛾ℎ = 4 while the ratio of the elastic section 

modulus at the beginning and the end of the beams is  𝛾𝑤 = 2,211. 

 

For the computation of the elastic critical load, Linear Buckling Analysis are 

performed. Since both of the beams are slender, the global buckling shape of shorter beams is 

obtained by introducing proportionally thicker web and flanges of the member. In this way any 

plate buckling and distortions of the section were disregarded. 

When defining the cross section class, 10 locations of an element were checked. 

According to the cross section class, the utilization ration was calculated at each of this location 

which gave the location of the first order failure (the position of the maximum utilization 

defines to the first order failure cross section).  

 

4.1 Elastic critical moment 

Here below are presented the results for the elastic critical moment obtained by different 

software for the observed beams. 

In this case the models are run in Abaqus, and the results are compared with the results 

obtained by LTBeamN as well as ELTBTB2 software.  
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        Figure 4-3 Cross section utilization 
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Graph 4-2 Daviation of critical amplifier for diferent temperatures, beams T1, uniform 

bending moment distribution 

 

 

Graph 4-3 Daviation of critical amplifier for diferent temperatures, beams T2, uniform 

bending moment distribution 

 

It can be seen from the graphs that the results obtained by LTBeamN really well 

corresponds to the numerical ones. The differences are in the range from -5% to +10%. But in 

the cases of very slender beams, with the slenderness bigger than 2, the critical moment 

obtained by LTBeamN is much higher than the real one (difference around 15%). Similar is 

with the beams with very low slenderness, below 0.3, when the difference is sometimes around 

20%. 
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Here below are presented the graphs for deviation of the results in respect to the load 

distribution. 

 

Graph 4-4 Daviation of critical amplifier for load distribution, beams T1, room temperature 

 

 

Graph 4-5 Daviation of critical amplifier for load distribution, beams T1, 400⁰C 
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Graph 4-6 Daviation of critical amplifier for load distribution, beams T1, 500⁰C 

 

 

Graph 4-7 Daviation of critical amplifier for load distribution, beams T1, 700⁰C 
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Graph 4-8 Daviation of critical amplifier for diferent load distribution, beams T2, room 

temperature 

 

Graph 4-9 Daviation of critical amplifier for diferent load distribution, beams T2, 400⁰C 
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Graph 4-10 Daviation of critical amplifier for diferent load distribution, beams T2, 500⁰C 

 

 

Graph 4-11 Daviation of critical amplifier for diferent load distribution, beams T2, 700⁰C 
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4.2 Resistance of the cross section 

In this study, cross section resistance was evaluated by performing geometrical and 

material non-linear analysis in Abaqus and the obtained results were compared to the ones 

obtained by using Marques Liliana’s design procedure explained in [3] as well as Merchant-

Rankine procedure suggested by Marc Braham and Dominique Hanikenne in [12]. This results 

were also compared with the ones calculated by using buckling curves given in EN 1993-1-1 

for the design of steel structures and EN 1993-1-2 for the fire design. 

4.2.1 Merchant-Rankine 

Even though the work of Braham and Hanikenne was limited to beams with no plate 

buckling, no distortion of the cross section and to a linear diagram of bending moment, in this 

work it has been extended to cross sections of class 4.  

Relative slenderness is defined as: 

p
LT

cr





 , 4.1 

where 
p and cr are ‘multiplicators’ of the plastic banding capacity in the weakest 

section of the beam and attainment of the elastic lateral instability of the beam respectively. 

Even though this concept of the amplifiers is present even in Eurocode, the reduction of the 

bending capacity of the beam is defined in a different way: 

1/

2

1

1
LT

n

LT n




 
  
  

. 4.2 

Here factor n depends on the angle of taper and has been shown that the suggestion 

given in [12] which says that in the case of constant bending moment it can be assumed to be 

equal to 1.5, gives too conservative results. Therefore, new values for this coefficient have been 

investigated and the results are presented in the graphs below (starting with the Graph 4-15). 

Since the beams that were investigated in this research are of class 4, instead of plastic 

resistance of the section, the elastic ones were used in order to stay consistent with the rules 

given in Eurocode. As for the critical multiplier, the results obtained by the elastic buckling 

FEA were used.  

The most suitable value for the exponent n is chosen to be the value of  𝛾𝑤 in case of 

room temperatures while for the elevated temperatures this value should be smaller. For this 

case, n being equal to 1.5, as it was originally suggested, gave the best results in comparison 

with the numerical results. 

4.2.2 Marques Liliana’s approach 

Even though this analytical model was calibrated for the beams class 1 and 2, here has 

been applied on the beams of class 4.  

It has been seen that the best results are obtained when the cross section class is defined 

according to the highest class within the member. This means that even though the class of the 

smallest section in case of beams T2 is 1 or 2, the elastic effective properties were used.  

As for the resistance of the cross section in the case of elevated temperatures, this 

approach gives mostly unsafe results even without using the over-strength factor. Here, when 
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defining the slenderness, plastic section properties were used when relevant. In this case the 

results are closer to the ones obtained numerically, but still unsafe. 

4.2.3 Eurocode approach for the access stability of members 

Annex B of EN 1993-1-5 gives rules for defining the reduction factor for the member 

resistance in case of non-uniform members. Imperfection factor to be used is 0.34p   and 

0 0.8p   (in case of welded profiles) instead of LT  and 0 0.2p  as it is according EN 1993-

1-1.  

Table 4-12 Values for ap and lp0, EN 1993-1-5 

 

 

4.3 Results  

 Reduction factor  

 

Graph 4-13 Reduction factor – slenderness diagram, beams T1, uniform bending 

moment distribution 
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Graph 4-14 Reduction factor – slenderness diagram, beams T2, uniform bending 

moment distribution 

 

 

  

  

Graph 4-15 Reduction factor due to various approaches for different temperatures, beams 

T1, uniform bending moment distribution 
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Here it can be seen that both Merkant-Rankine’s and Marques’ approaches give safe 

results which very well correspond to the numerical ones. The deviation in the results for the 

slenderness lower than 0.5 is due to the fact that the resistance of the beam is not achieved by 

lateral torsional buckling, and this cases (section resistance) are not studied in this research. 

The two studied approaches at room temperatures give almost the same results. The two curves 

in the first graph are matching almost completely but still giving slightly unsafe results for the 

slenderness bigger than 1.0. 

  
 

  

Graph 4-16 Reduction factor due to various approaches for different temperatures, beams T2  

Here in the first graph on the top can be seen that all the results match very well. This 

is due to the fact that the critical section of the beams is not of class 4. This result actually just 

verifies the accuracy of the existing procedures. Even the Eurocode procedure is corresponding 

well to the numerical results.  
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 Cross section resistance 

 

Graph 4-17 Daviation of section resistance of beams T1, room temperature 

In the case of beams type T1, the results obtained by Marques’ equations differ from 

the numerical ones more than in the case of beams type T2. This is because at the position of 

the critical section in case of beams T2, the cross sections are of class 1 or 2 which are the cases 

that Marques’ approach is calibrated at. Still, in this condition of Class 4, this procedure gives 

very good results. It should be said that in the graph presented above (Graph 4-18) the 

resistances of beams that have slenderness lower than 0.5 are governed by local buckling of 

the plates and more importantly also affected by shear forces. This causes the decrease in 

resistance in the chart for short beams.   
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Graphs 4-19 Daviation of section resistance of beams T1, various temperatures 
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Graph 4-20 Daviation of section resistance of beams T2, room temperature 
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Graphs 4-21 Daviation of section resistance of beams T2, various temperatures 

 

 

Graph 4-22 Daviation of section resistance of beams T1, uniform load 

 

 

Graph 4-23 Daviation of section resistance of beams T2, uniform load 
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The presented results show that even in the case of fire both procedures give relatively 

good results. Merchant-Rankin approach seems to be more suitable taking into consideration 

the simplicity of the application of this method. The problem here is that the results are highly 

dependent on the coefficient n which should be definitely studied more and checked on the 

very different types of tapered beams. 

4.4 Final remarks 

Tapered beams should be adopted in order to optimize the load capacity at each cross 

section according to the respective stress distribution. This is rising many questions up, such 

as what would be the cases in which the tapered member is worth applying, or, in which cases 

the effect of tapering is worth considering in the calculation. 

- In case of uniformly distributed moments, definitely the prismatic beams should be 

adopted since in that way all cross sections would be fully utilized.  

- For the triangular bending moment distribution, the higher the taper ratio the utilization 

of the cross section is more optimized. 

The results obtained by numerical analysis are very well corresponding to the real 

behaviour of the beams. Still, finite element software usage requires some experience since the 

small differences in the model can lead to very different results.  

When defining the relevant buckling modes to be accounted for in non-linear analysis, 

the deformation of the critical section (according to the first order utilization ration) is taken 

into account. Still, this is not always accurate. For example, when dealing with constant 

bending moment distribution on tapered member, the critical section that would be most logical 

to be chosen is the smallest section. This is valid assumption in the case of small taper ratios. 

But the bigger the taper is, the critical section is moving towards the middle of the member. 

The problem is that even the small change in the definition of the critical section influences 

results a lot since the cross section properties change rapidly in case of very tapered members. 

Additionally, position of the critical section of one beam in elevated temperatures 

differs from the position defined in for the room temperatures for the same beam. 

Also, it is hard to precise the position of critical section in GMNIA analysis since the 

resistance is sometimes reached by local buckling in the compressed flange or local (resp. 

shear) buckling of the web. This occurs in case of the very short beams (beam slenderness less 

than 0.5) and even though the results are not valuable in this study, they have been presented 

in the charts. 

The results that were affected by shear were discarded since the analysis of the bending 

moment and shear interaction was not the topic of this research. 
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5 Conclusion 

In this paper was studied lateral torsional stability of beams. Several ways of obtaining 

critical bending moment were compared. Also some existing approaches for the stability 

verification of web-tapered beams were analysed.  

Even though there are many proposals for the elastic critical moment, all the solutions 

are complicated since many mistakes can be done when calculating. Some of them are 

calibrated just on particular loading cases. Based on the obtained results that are shown above, 

it can be seen that the existing tool (LTBeamN) for the definition of critical bending moment 

can be used. Besides from the accuracy of the results that it provides, this program is very easy 

to use and doesn’t require powerful machine to run it. Also, LTBeamN has a possibility for 

taking into account the interaction between bending moment and axial force. Still, these cases 

were not investigated in this research.  

As for the Marques’ approach, it gives results which are mainly on the safe side. 

Somewhat better results are obtained by using imperfection factor 0.34p   and 0 0.8p   

instead of the ones that are proposed for the class sections 1 and 2. These factors are the same 

ones that are proposed by Eurocode for the non-uniform beams of class 4. In case of elevated 

temperatures the results are not as accurate as in the case of room temperatures, but they are on 

the safe side. Here the over-strength factor is ignored (set to be equal to 1). 

Merchant-Rankine approach gives satisfying results when using n coefficient equal to 

1.5 in the case of elevated temperatures. In case of room temperatures results can be much 

improved when using this coefficient equal to 𝛾𝑤. 

Still, Eurocode approach gives pretty accurate results in case of beams of T1 which are 

of class 4. Taking into account the simplicity of the approach this might be the best approach 

in case of uniform bending moment distribution. On the other hand, when dealing with the 

beams at elevated temperatures, Eurocode gives unsafe results. 
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