
STABILITY OF 
COLD-FORMED ELEMENTS
Czech Technical University in Prague

2E12  Design of steel structures for renewable energy systems 1

21/11/2010



Contents

21/11/20102E12 Design of steel structures for renewable energy systems

2

 Behavior features:
 local buckling of compression elements
 plane elements
 elements with stiffeners

 shear lag
 web crippling

 Cross-section check
 Beams restrained by sheeting
 Connections



Cross-section idealiseation
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Cross-section

21/11/2010C9 Design of steel structures for renewable energy systems

4

 Idealised section with radiuses r=0 when r<5t



Buckling in compression
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Buckling strength
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 Local buckling
 Distortional buckling

 Section distortion

 Global buckling
 Shear buckling

Sectional modes



Buckling strength
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Buckling strength
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Local buckling
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 Theory + calculation procedures 
(see local buckling of plates)

 Elements:
 doubly supported
 outstands

 stiffened
 plain 
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Stiffeners
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 Edge stiffeners

 Intermediate stiffeners



Stress distribution on stiffened plate
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 Calculation model
 stiffener supports plane element
 stiffener itself can buckle (as compression member on 

elastic foundation)



Buckling of edge stiffener 
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Spring stiffness of stiffener 
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Stress distribution - idealisation
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- distortional buckling



Calculation procedure
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1. Stiffener provides rigid support to the plate ⇒
effective widths

2. K, As, Is
3. Critical stress σcr
4. for σcom = fy ⇒ χd (distortional buckling)
5. σcom = χd fy
6. Effective widths of parts adjacent to the stiffener
7. As, Is
8. iteration 3. – 7.
9. tred = χd t



Final effective cross-section
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(Vrany)

Interaction of local and distortional buckling
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http://www.ce.jhu.edu/bschafer/cufsm

Buckling modes
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Check – cross-sections, members
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 EN 1993-1-3

 Limits:
 members0,45 ≤ t ≤ 15 mm
 sheeting 0,45 ≤ t ≤ 4 mm



Compression
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 interaction of local and global buckling
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Buckling modes
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Flexural-torsional buckling
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 uniaxial symmetrical profiles

 torsional buckling: 
 flexural-torsional buckling:       …combination 

 buckling curve b
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Members subjected to bending
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Bending
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 Lateral-torsional buckling

 Specific design of cold-formed members in bending 
subjected to lateral-torsional buckling

( ).eff Rd LT eff ydM W fχ=



Behaviour - Z section in bending
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 Slender section → local buckling
 Edge stiffener – distortional buckling

 Non-symmetry → distortion of cross-section 
Out-of-plane buckling of free flange in hogging 
moment areas



Cross-section distortion
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Cross-section distortion
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 Simplified model
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Calculation procedure EN1993-1-3
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 Sagging moments:

 Hogging moments:
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Web crippling
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Web crippling
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Web crippling
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Web crippling
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 Eccentric compression to web 
 Rw,Rd …equations derived experimentally



Web crippling
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 Cases:
 Single web

 Two or more webs



Web crippling
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 Loading – cases: 
 a) close to free end
 b) far from free end

 a) from one side
 b) from both opposite sides

 Rw,Rd = f(t2, r/t, f, ss …)
 product of individual factors



Interaction
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Combination M+R
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 Governing condition e.g. for corrugated sheeting, 
continuous beams
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Combination compression + bending 
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Shear lag
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Shear lag
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 by elastic analysis (I. order) ⇒ both tension and 
compression

 factor of ratio Le/b0 … to solve when Le/b0 < 50



Shear lag
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 for thin-walled sections, b0:

 Effective width:
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Shear lag
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 Effective width:
 Effective width factor 

0effb bβ= ⋅



Connections
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Connections
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 Welds
 fillet
 t ≥ 3 mm (automatic … t ≥ 2 mm)
MAG is best
 lap connections

 spot



Connections
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 Mechanical fasteners
 blind rivets
 screws 3 ≤ d ≤ 8 mm
 self-drilling (self-tapping)
 thread-cutting

 cartridge fired pins
 bolts



Blind rivets
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Screws
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 Different failure modes compared with classic bolts 



New types of connections
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 “Rossete” system

 Adhesive bonding (problem of lifespan reliability)



Design aids
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Design aids
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 Tables

PROFIL

váha profilu řádek rozpětí pole  L [m] rozpětí pole  L [m]
číslo 5,0 6,0 7,0 8,0 9,0 10,0 5,0 6,0 7,0 8,0 9,0 10,0

1 3,41 2,34 1,70 1,29 1,00 4,91 3,03 2,09 1,54 1,19
2 3,41 2,34 1,70 1,15 4,91 3,03 2,09 1,54 1,19

Z 250/2,0 3 3,28 1,86 1,15 4,91 3,03 2,09 1,48 1,02
7,80 kg/m 4 2,49 1,63 1,12 3,95 2,48 1,70 1,25

5 -2,44 -1,65 -1,19 -0,89 -0,69 -3,95 -2,64 -1,90 -1,43 -1,11
6 -1,92 -1,29 -0,91 -0,68 -0,52 -3,16 -2,08 -1,48 -1,10 -0,85
1 4,61 3,17 2,31 1,74 1,36 1,08 6,59 4,10 2,84 2,11 1,64 1,30
2 4,61 3,17 2,28 1,50 1,02 6,59 4,10 2,84 2,11 1,64 1,30

Z 250/2,5 3 4,25 2,42 1,49 0,97 6,59 4,10 2,84 1,92 1,32
9,70 kg/m 4 3,66 2,43 1,68 1,20 5,75 3,57 2,47 1,83 1,41 1,03

5 -3,31 -2,26 -1,63 -1,22 -0,95 -0,75 -5,29 -3,58 -2,59 -1,95 -1,52 -1,21
6 -2,81 -1,91 -1,37 -1,02 -0,78 -0,62 -4,53 -3,04 -2,19 -1,64 -1,27 -1,01

PROSTÝ NOSNÍK SPOJITÝ NOSNÍK S PŘESAHY
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 Software
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